OWASP Mobile Top 10 - 2014 정리

스마트폰 2014. 11. 21. 21:50 Posted by TEAMCR@K

1. 개요

OWASP Mobile Top 10 이 2014년 초 리-릴리즈 되었습니다. 그동안 금융권 및 기업들의 모바일 자산들에 대해 자사의 모바일 모의해킹 방법론과 금융위, 금감원 체크리스트 그리고 OWASP Mobile Top 10 리스트를 포함 하여 다수의 모의해킹 프로젝트를 수행하였습니다. 이번에 OWASP Mobile Top 10 List 에 대해 간단하게 정리할 기회가 생겨 블로그에 작성하게 되었습니다.

 

<그림1> OWASP Mobile Top 10 List

 

간단하게 Top 10 Risk를 살펴보면 다음과 같습니다.

 

○ M1 - 서버사이드에서 발생할 수 있는 취약점
            대부분의 앱이 서버와의 통신으로 이루어지고 개발시 하이브리드 앱으로 많이 개발되기 때문에 클라이언트에서 파라미터

            값 변조를 통한 웹에서 발생 할 수 있는 취약점들이 도출될 수 있습니다.
○ M2 -  중요정보들이 스마트폰 내에 저장되는 경우
            스마트폰 분실 혹은 공격자에 의해 권한 탈취 시 해당 중요정보들 또한 공격자에게 전달됩니다.
○ M3 -  민감한 정보 평문 전송
             개인정보 혹은 중요정보들이 네트워크상에서 평문으로 전송될때 발생하게 됩니다.
○ M4 -  의도하지 않은 데이터 누출
             타 앱에서 접근 가능한 데이터영역에 민감한 정보를 저장시 발생할 수있는 리스크 입니다.
○ M5 -  인증 및 인가 검증 미흡
             클라이언트 내부에서 인증 시 우회 가능하기 때문에 인증 검증을 서버사이드에서 인증 절차를 확인해야 합니다.
○ M6 -  취약한 암호화
             개발 시 암호화 기술에 대한 적정성 여부를 판단하여 적용해야 합니다.
○ M7 -  클라이언트 사이드 인젝션
             클라이언트에서 발생할 수 있는 인젝션 공격입니다.
○ M8 -  신뢰할 수 없는 입력 값에 의한 보안 의사결정
             프로세스간 통신 시 발생 할 수 있는 취약점입니다.
○ M9 -  부적절한 세션 관리
             서버에서 부여받은 세션 관리에 대해 나와있습니다.
○ M10 - 바이너리 보호 미흡
             앱과 서버와 통신 시 앱에 대한 무결성 검증이 필요합니다.

 

 

2. Risk List 상세

2.1 M1: Weak Server Side Controls

모바일 역시 서버와 통신하여 데이터를 받아오게 됩니다. OWASP Mobile top 10에서 첫번째는 Weak Server Side Controls입니다.
해당 방법론은 OWASP에서는 기존 web과 cloud 에 해당되는 OWASP Top 10 취약점을 포함한 서버사이드에서의 취약점을 Mobile Risk top 1으로 꼽았습니다.
자사에서의 방법론 또한 해당 항목을 포괄적으로 적용하여 보고서 및 수행계획서에 포함하여 모의해킹을 진행 합니다.

<그림2> OWASP Top 10 (Web, Cloud)

 

 

시큐어 코딩과 중요 로직 등 서버사이드에서 동작할수 있도록 해야하며, 자세한 정보는 OWASP Top 10 web, cloud 프로젝트를 참고합니다.
OWASP Top 10 Web: https://www.owasp.org/index.php/Top10#tab=Main
OWASP Top 10 Cloud: https://www.owasp.org/index.php/Category:OWASP_Cloud_%E2%80%90_10_Project

 

<그림 3> OWASP에서 보는 모바일 애플리케이션 취약점 리스트

 

 

3.2 M2: Insecure Data Storage

두번째 Insecure Data Storage는 기존 금감원, 금융위 점검 체크리스트에도 포함된 스마트폰에 중요정보 저장금지 항목과 동일합니다. 자사에서도 해당 항목에 대해 빠른 점검을 위해 현재 소스코드 및 데이터 안에 중요 문자열 검색 자동화 툴을 제작하고 있습니다.
또한 앱 소스코드안에 하드코딩되어있는 계정정보 혹은 테스트 서버 주소 등 또한 자동화된 툴로 찾아낼수 있도록 하여 컨설턴트가 앱 점검시 보다 효과적이고 빠르게 점검할 수 있도록 프로세스화 할 예정입니다.

 

중요 데이터 저장 확인 리스트
- SQLite databases
- Log Files
- Plist Files
- XML Data Stores or Manifest Files
- Binary data stores
- Cookie stores
- SD Card
- Cloud synced

 

대응방안으로는 다음과 같습니다.
기본적으로 중요데이터는 필요한 데이터를 제외하고는 모바일 디바이스 안에 저장하지 않아야 합니다.

 

iOS
 - 계정(자격증명)을 파일시스템 안에 저장해서는 안되며, 웹 또는 api 로그인 방식(https)을 통해 인증하고 세션시간은 사용자의

    사용 시간을 고려한 최소한의 시간으로 설정해야합니다.
 - 중요정보 저장시 iOS 표준 암호화 방식인 CommonCrypto를 사용하며, whitebox cyptography 솔루션을 이용하는것도 하나의

    방법입니다.
 - Sqlite data 암호화를 위해 SQLcipher를 사용합니다.
 - 개발시 NSUserDefualtes 에 중요정보를 저장하지 않아야 합니다.
 - NSManagedObects를 사용하여 데이터를 저장할 경우 암호화 되지 않은 데이터들이 저장되는 것을 주의해야 합니다.
 - 중요정보 저장 시 하드코딩된 암호화 또는 암호화 해독키에 의존하지 말아야 합니다.
 - OS에서 제공된 기본 암호화 메커니즘 이외 추가적인 암호화 계층을 고려해야 합니다.

 

Andorid
 - 기기관리자 API를 이용하여 local storage에 setStorageEncryption을 사용하여 암호화 할 수 있습니다.
 - javax.crypto의 라이브러리를 이용하여 SD카드 저장 시 암호화 할 수 있습니다. 가장 쉬운 방법은 마스터 암호 및 AES 128과

   일반 텍스트를 암호화 하는 것입니다.
 - 앱사이에 정보공유가 필요하지 않은 경우 공유설정 속성을 NOT MODE_WORLD_READABLE 해야 합니다.
 - 중요정보 저장 시 하드코딩된 암호화 또는 암호화 해독키에 의존하지 말아야 합니다.
 - OS에서 제공된 기본 암호화 메커니즘 이외 추가적인 암호화 계층을 고려해야 합니다.

 

 

3.3 M3: Insufficient Transport Layer Protection

해당 항목은 서버와의 통신시 암호화 여부를 확인하는 항목으로 금감원, 금융위 체크리스트에 포함된 항목으로 중요 정보 전송 시 네트워크 구간에서 암호화 여부를 확인하는 항목입니다. 네트워크 암호화에 대한 정당성 여부를 해당 항목에서 확인합니다.

 

- 네트워크 계층에 보안 없다면 도청에 취약하다고 가정합니다.
- 민감한정보, 세션토큰등을 전송하기 위해서 SSL/TLS를 적용합니다
- 적절한 키길이와 업계표준의 암호화 방식을 사용합니다.
- 신뢰할 수있는 CA 공급자에 의해 서명 된 인증서를 사용합니다.
- 항상 SSL chain 확인이 필요합니다.
- 모바일 앱이 잘못된 인증서를 발견할 경우 UI를 통해 사용자에게 알려야 합니다.
- 대체 채널 (SMS, MMS, 또는 알림)를 통해 민감한 데이터를 전송하지 않습니다.
- 가능하면 민감한 정보에 대해서는 암호화하고 SSL 통신을 적용합니다. SSL에서 취약점이 발견될 경우 이차적인 방어를

   제공합니다.

 

 

3.4 M4: Unintended Data Leakage

네번째 항목은 의도치 않은 데이터 누출 입니다. 개발자가 개발 당시 타 앱에서 쉽게 접근 할수 있는 영역에 취약한 앱이 민감한 정보를 저장할때 발생 할 수  있는 취약점 입니다. 개발 시 아래항목에 대해 민감한 정보 저장여부를 확인하여 접근 가능한 타 앱들을 제어하여 민감한 정보 노출을 최소화 해야 합니다.

- URL Caching (Both request and response)
- Keyboard Press Caching
- Copy/Paste buffer Caching
- Application backgrounding
- Logging
- HTML5 data storage
- Browser cookie objects
- Analytics data sent to 3rd parties

 

3.5 M5: Poor Authorization and Authentication

다섯번째는 취약한 인가 및 인증 입니다.
제한된 앱에 대한 사용, 인증된 유저만 사용 할 수 있는 기능에 대한 우회 등 바이너리 변조를 통해 인증 및 권한을 획들할 수있습니다.

모든 클라이언트 인증은 악의적인 사용자에 의해 우회가 가능합니다. 따라서 가능하다면 서버 측에서 인증 및 권한부여를 해야 합니다. 바이너리 변조에 대한 무결성 검증을 하지 않을 경우 내부 로직 변경으로 인증우회가 가능합니다. M10(Lack of Binary Protections)에 관련되어서도 추가로 확인해야합니다.

 


3.6 M6: Broken Cryptography

앱에 대한 데이터 보호를 위해 취약한 암호화 방식을 적용할 경우 나타날 수 있는 취약점입니다.
현재 사용하기 불충분한 알고리즘은 다음과 같습니다.
RC2 ,MD4, MD5, SHA1

두번째로는 올바른 알고리즘을 선택하여도 동작하는 프로토콜에 대해 적용 미흡으로 발생합니다.
예를 들어, 컨텐츠와 중요 키를 함께 저장할 경우, 공격자가 해당 키를 이용하여 중요 정보를 해독할 수 있습니다.
해당 항목에 대해서는 암호화 방식이 명시된 개발 명세서(Specification)를 통해 확인 가능합니다.


3.7 M7: Client Side Injection

일곱번째 클라이언트 사이드 인젝션은 모바일 앱 에서 모바일 디바이스에 실행시키기 위해 사용자 입력 값에 악성코드를 삽입하는 취약점입니다.

서버사이드 취약점과 반대로 클라이언트 사이드에서 발생하는 취약점입니다.

위협되는 취약점으로는 다음과 같습니다.
SQLite Injection, Local File Inclusion, XML injection, javascript injection(xss, etc), Binary injection 등등

 

 

3.8 M8: Security Decisions Via Untrusted Inputs

여덟번째 내용은 Security Decisions Via Untrusted Inputs(신뢰할수 없는 입력값에 의한 보안 의사결정) 입니다.
프로세스 간의 통신 (IPC) 매커니즘에서  발생할 수 있는 취약점입니다. 민감한 정보는 IPC매커니즘을 사용하지 않아야 하며,
iOS 앱 간의 통신 시 Pasteboard 방식과 handleOpenURL 방식을 지향하며, 필요 시 openURL방식을 통해 앱 간의 통신을 해야 합니다. openURL 방식은 sourceApplication 이 명시되어 있어 제한된 앱에서만 통신할 수 있습니다.

 

 

3.9 M9: Improper Session Handling

아홉번째로 Improper Session Handling 입니다.
인증 후 세션을 부여받았을때, 한개의 세션에 한개의 모바일 디바이스가 허용되도록 해야합니다. 또한 모바일 앱 코드에서 사용자 세션을 보호해야 합니다.

아래는 올바른 세션 핸들링 입니다.
- Failure to Invalidate Sessions on the Backend: 많은 개발자들이 세션 파기시 모바일 앱에서만 세션을 파기하는데 해당 세션

   탈취 시 서버와 통신을 이어갈 수 있어 서버 측에서 또한 세션을 파기해야 합니다.
- Lack of Adequate Timeout Protection: 세션 timeout을 설정해야 합니다. 세션 timeout설정하여 악의적인 사용자가 존재하는

   세션을 탈취 시 타 사용자 권한을 획득하는 것을 막을수 있습니다.
- Failure to Properly Rotate Cookies: 인증 상태 변경 시 이전 세션에서 사용되었던 쿠키가 허용되지 않도록 파기해야 합니다.
- Insecure Token Creation: 토큰 생성시 guessing /anticipation attack 에 노출되지 않도록 개발자는 잘 적립된 암호화

   알고리즘을 통해 암호화 해야 합니다.

 


3.10 M10: Lack of Binary Protections

마지막 열번째는 Lack of Binary Protections 입니다.
금감원, 금융위 점검 시 함께 하는 애플리케이션 무결성 검증과 동일한 항목으로 바이너리 변조를 통해 보안솔루션 우회, 권한상승

등 애플리케이션 로컬에 존재하는 로직들을 공격자가 변조할 수 있게 됩니다. 변조된 애플리케이션은 서버 측에서는 해당 앱에 대해 변조된 앱인지 확인하지 않으면 정상적인 요청으로 인지하여 다양한 종류의 risk가 존재하게 됩니다.

자사에서는 보안솔루션 우회, MDM솔루션 정책 해제, 루팅 및 탈옥탐지 우회, 게임크랙 등 바이너리 변조를 이용한 시나리오 기반 점검 방법론을 통해 모바일 모의해킹을 수행하고 있습니다.

 


4. 결론
지금까지 OWASP에서 발표한 모바일 Top 10 Risk에 대해 간단하게 살펴 보았으며, 모바일 Top 10 리스크는 취약점 도출뿐만 아니라 개발 시 해당 리스트를 고려하여 개발 할 수 있도록 10가지 위협에 대한 가이드 라인이 나와있습니다.
모의해킹 시나리오는 다양하게 존재하지만, 10가지 위협에 대한 기술 및 정책 수렴을 통해 개발 혹은 취약점 도출 시 기준점을 시사할 수 있겠습니다. 자세한 내용을 살펴보려면 아래 링크를 확인해 주시길 바랍니다.
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks

마지막으로 블로그에 간단하게 정리한 내용이 개발자 혹은 모의해킹 컨설턴트들에게 유용한 정보가 되었으면 합니다.
감사합니다.

 

 

얼마전 포스팅 했던 CVE-2013-4011 AIX InfiniBand 취약점을 통해 본 고전해킹글을 보신 어떤 분께서 아래와 같은 질문을 하셨습니다.


"A3는 모의해킹 시, 내부 침투를 위해 어떤 방법을 사용합니까?"


해당 포스팅 글 중 캡쳐화면의 일부에서 192.x 로 시작하는 사설아이피 정보가 노출되어 궁금해지셨다고 합니다.

모의해킹을 하기 위한 방법은 팀마다 소유하고 있는 노하우가 다르고, 개개인 역시 사용하는 툴이나 방법도 다양합니다.

따라서 이것이 정답이다! 라고 하기 보다, 많은 방법들 중 포트포워딩을 통한 내부 침투의 케이스를 공유해볼까 합니다.


본 포스팅에서 설명 드리게 될 포트포워딩에 사용되는 툴은 lcx라는 툴로, 한때 웜 바이러스나 중국발 해킹 등에 사용된 포트포워딩 악성프로그램입니다.

악성프로그램이지만 동작구조가 응용하기 쉽게 되어 있는 프로그램이기 때문에 모의해킹에 사용되기도 합니다.


우선 다음 구조도를 참고하시면 lcx를 사용한 내부 침투가 어떻게 이루어지는지 간단하게 이해하실 수 있을 듯 합니다. 


[그림 1] lcx를 사용하여 포트포워딩으로 구성한 내부 침투 구조도


lcx의 경우 중국발 해킹에 사용되었기 때문에 소스코드는 유출이 되지 않은 것으로 알고 있습니다.

2007년경 침해사고 분석 시, Windows 서버에서 lcx를 접하고 이를 모의해킹에 응용하기 위해 구조를 분석하여 Clone 프로그램을 만드는 개인 프로젝트를 했었습니다.

현재 저희 팀 모의해킹에 사용되는 lcx Clone 프로그램은 해당 프로젝트의 산출물인 셈 입니다.

lcx Clone 프로그램은 Windows 용 lcx와 호환이 가능할 뿐 아니라 소스코드가 온전히 보존되어 있기 때문에 타 플랫폼에서 사용도 가능하며, lcx를 악성프로그램으로 탐지하는 백신의 경우 재 컴파일하여 우회할 수 있는 등의 특징이 있습니다.


Web Server가 Windows인 경우, SQL Injection 취약점으로 명령어를 실행할 수 있는 환경이거나 파일 업로드 취약점을 이용하여 웹쉘을 통해 명령어를 실행 할 수 있는 경우 lcx를 업로드 하고, 이를 통해 내부 네트워크에 있는 다른 서비스들을 접근할 수 있습니다.

다음 화면들은 위 [그림 1] lcx를 사용하여 포트포워딩으로 구성한 내부 침투 구조도 그림에서 보실 수 있는 구조와 같이 lcx를 이용해 Web Server의 터미널 서비스(3389 포트)에 접근하는 과정입니다.


[그림 2] lcx를 사용하여 loopback(127.0.0.1)의 터미널 서비스 포트(3389) 리다이렉트


[그림 3] 포트포워딩을 통해 방화벽 Inbound 룰셋을 우회하여 터미널 관리권한 획득


위 화면들을 통해 포트포워딩으로 Inbound 룰셋을 우회하고 내부의 다른 서비스포트로 접근이 가능한 것을 볼 수 있습니다.

slave 역할을 하는 서버에서 loopback이 아닌 다른 아이피 주소와 포트를 지정하면 다음과 같은 시나리오도 가능하다는 것을 알 수 있습니다.

[그림 4] 포트포워딩을 통해 물리적으로 별도 존재하는 DB 서버 접근


위와 같이 물리적으로 별도 서버로 존재하는 경우는 아니지만, 다음 화면들을 통해 MS-SQL 서비스 포트(1433)를 포워딩하여 GUI 환경의 데이타베이스 관리 및 점거가 가능함을 볼 수 있습니다.


[그림 5] MS-SQL 서버의 서비스 포트(1433) 리다이렉트 설정


[그림 6] 리다이렉트 된 포트를 사용하여 MS-SQL GUI 관리프로그램을 통한 로그인 성공


저희 TeamCR@K이 모의해킹 중 내부침투를 위해 어떤 방법을 사용하는지..에 대한 궁금증이 조금은 풀리셨는지 모르겠습니다.

이러한 방법이 탐지되고 막히면 저희는 또 다른 연구를 통해 우회방안을 만들어야겠지요.. ^^;

그러나 대한민국 IT보안을 위하는 것이라면 그러한 수고(?)쯤은 하나도 힘들지 않을 것 같습니다. ^^

보안이라는 것은 강조하고 또 강조해도 모자름이 없을테니까요..


읽어주셔서 감사합니다.

1. Linux ELF Binary Hack #1 (언어론적 고찰)

2. Linux ELF Binary Hack #2 (구조론적 고찰)


지난번에 다루었던 1. Linux ELF Binary Hack #1 (언어론적 고찰)편에서는 단순히 프로그래밍 언어에 한정하여 파일의 크기를 줄이는 시도를 했었다면 이번에는 실행파일 구조의 특성과 툴을 사용하는 방법들을 통해 접근해보고자 합니다.


먼저 ELF 파일 포멧을 알아보는 툴로 objdump라는 툴이 있습니다.

해당 툴을 이용해 ELF 파일 포멧 구조를 대강 알 수 있는데, 다음과 같이 활용 해 볼 수 있습니다.


[그림 1] objdump툴의 -S 옵션으로 바이너리 분석


위 그림은 objdump툴로 디스어셈블(Disassemble)해 본 화면입니다.

main 함수의 주소는 0x08048374이며, _start 영역에서 해당 main 함수의 주소를 stack에 저장하는 것을 볼 수 있습니다.

이러한 과정은 왜 거치는 것일까요?

다음 Link에는 Linux에서 main 함수가 어떻게 실행되는지 간략하게 설명되어 있습니다. 참조하시면 도움이 되실 듯 합니다.


http://www.tldp.org/LDP/LGNET/issue84/hawk.htmlHow main() is executed on Linux By Hyouck "Hawk" Kim


objdump 툴을 사용해 _start 함수의 정보를 알아내고 해당 주소가 바이너리의 어느 부분에 존재하는지 찾아보았습니다. 


[그림 2] 바이너리 파일 내에 존재하는 start 함수 주소


해당 내용을 조금 더 자세하게 확인하기 위해 ELF 파일포멧의 구조체가 정의된 헤더파일을 참조해 보았습니다.


[그림 3] ELF 정의 구조체와 실제 바이너리 파일 비교


ELF 파일 포멧의 구조들을 확인 한 후 프로그램 시작점을 main 함수 대신 _start 함수로 정의하면 어떨까 생각해 보았습니다.

다음은 main 을 함수의 시작으로 정의하지 않고 _start를 프로그램의 시작으로 정의하여 Assembly 소스코드를 작성하고 컴파일 해 보았습니다.


[그림 4] gcc 컴파일러의 -nostdlib 옵션 사용


처음 시도 시, _start 함수에 대해 "다중 정의 에러"라고 컴파일 되지 않았던 문제는 gcc 의 -nostdlib 옵션을 사용해 컴파일 한 결과 정상적으로 컴파일 및 실행이 되는 것을 확인 할 수 있습니다.

gcc 의 -nostdlib 옵션에 대해 man 페이지는 다음과 같이 설명되어 있습니다.


       -nostdlib

           Do not use the standard system startup files or libraries when

           linking.  No startup files and only the libraries you specify will

           be passed to the linker.  The compiler may generate calls to "mem-

           cmp", "memset", "memcpy" and "memmove".  These entries are usually

           resolved by entries in libc.  These entry points should be supplied

           through some other mechanism when this option is specified.


           One of the standard libraries bypassed by -nostdlib and -nodefault-

           libs is libgcc.a, a library of internal subroutines that GCC uses

           to overcome shortcomings of particular machines, or special needs

           for some languages.


           In most cases, you need libgcc.a even when you want to avoid other

           standard libraries.  In other words, when you specify -nostdlib or

           -nodefaultlibs you should usually specify -lgcc as well.  This

           ensures that you have no unresolved references to internal GCC

           library subroutines.  (For example, __main, used to ensure C++ con-

           structors will be called.)


대략적으로 gcc의 -nostdlib 옵션을 사용하여 컴파일 하는 경우 링크 시에 기본적인 시스템 초기 라이브러리들을 링크하지 않는다는 내용입니다. 따라서 기존에 _start가 정의되어 있던 라이브러리는 배제하고 Object 파일을 생성할 수 있고, "다중 정의 에러"를 회피 할 수 있습니다.

결과적으로 main 대신 _start를 프로그램 시작점으로 사용하고 기본 라이브러리를 배제하는 형태로 472바이트의 쉘 실행 바이너리를 만들어 낼 수 있었습니다.

여기서 조금 더 욕심을 내어 shellcode 작성과 같이 NUL문자(0x00)를 제거하는 형태로 수정해 보기로 하였습니다.


[그림 5] Assembly 상태의 0x00 코드 제거


수정을 해 보았지만 파일 크기에 큰 변화가 있지는 않았습니다.

마지막으로 조금 더 바이너리를 작게 만들기 위해 극단적인 시나리오를 생각해 보았습니다.


"이미 쉘 실행이 되어 있는 상태는 메모리에 프로세스 이미지로 존재하는 상태이므로, 이후 정리작업에 필요한 코드를 삭제해보자"


따라서 기존 바이너리에서 쉘 실행 이후 사용될 법한 부분들을 삭제해보기로 하였습니다.


[그림 6] dd로 바이너리 파일 쪼개기


쉘 실행에 필요한 부분은 int 0x80 (0xCD 0x80)까지 이므로, 이후의 내용은 모조리 날려보았습니다.

그렇게 하여 109바이트짜리 Linux 실행 파일이 만들어졌고, 정상적으로 동작하는 것도 확인 할 수 있었습니다. 


이러한 실행파일이 절대 정상적으로 만들어진 실행파일이라고 볼수는 없지만, 서버 내부에 컴파일이 안되는 환경이나 기존에 의도한 동작을 수행하는 바이너리를 생성하도록 만든 exploit을 만들 시, 코드 형태로 쉽게 만들 수 있는 등의 용도로 활용될 수 있습니다.

더욱이 이러한 작업(혹은 삽질?^^;)들을 통해 개인의 지식이 발전함은 말할 나위 없겠지요...


이상 Linux기반에서 바이너리 파일의 크기를 줄이기 위한 삽질기였습니다.


아무튼 많이 쌀쌀해진 날씨에 감기 조심하시고 이러한 보잘것 없는 삽질기라도 읽어주셔서 감사합니다. ^^

더욱 발전하는 TeamCR@K이 되겠습니다. 

감사합니다.